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Abstract

A computational study of the e�ects of buoyancy-driven convection on constrained melting of phase change ma-

terials within spherical containers is presented. The computations are based on an iterative, ®nite-volume numerical

procedure using primitive-dependent variables, whereby the time-dependent continuity, momentum and energy

equations in the spherical coordinate system are solved. A single-domain enthalpy formulation is used for simulation of

the phase change phenomenon. The e�ect of phase change on convection is accounted for using a Darcy's law-type

porous media treatment. Early during the melting process, the conduction mode of heat transfer is dominant, giving rise

to concentric temperature contours. As the buoyancy-driven convection is strengthened due to the growth of the melt

zone, melting in the top region of the sphere is much faster than in the bottom region due to the enhancement of the

conduction mode of heat transfer. When buoyancy e�ects are very marked, as many as three time-dependent recir-

culating vortices are observed. In comparison to the di�usion-controlled melting, buoyancy-driven convection accel-

erates the melting process markedly. The Prandtl number plays an important role in the melting process. With the

Rayleigh number ®xed, changing the Prandtl number from 0.03 to 1.0 and 50 brings about totally di�erent ¯ow and

melting patterns. The computational ®ndings are veri®ed through qualitative constrained melting experiments using a

high-Prandtl number wax as the phase change material. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction and literature review

The important role of buoyancy-driven convection

during the phase change process has been recognized for

some time now, and excellent reviews have been pub-

lished [1±3]. In the metallurgical and material processing

applications, it is well established that the properties of

metals and alloys are determined by their microstruc-

ture, which in turn is strongly a�ected by the state of

convection close to the solid±liquid interface during the

melting or solidi®cation processes. In thermal energy

storage systems, capsules of spherical shape are one of

the most commonly used for storing phase change ma-

terials (PCM). Although, the stimulus for research of

melting and solidi®cation processes is related to such

advanced processing techniques such as spray casting,

growth of defect-free crystals, latent heat-of-fusion

storage system, etc., very little theoretical analysis of the

phase change process in spherical geometries is avail-

able. Considering spherical geometries, apart from sev-

eral analytical investigation of di�usion-controlled

phase change processes reported before 1980s, Moore

and Bayazitoglu [4] were the ®rst to investigate the un-

constrained melting (meaning that the solid portion

drops within the melt due to its higher density) of the

PCM within spherical enclosures both experimentally

and numerically. A mathematical model was developed,

which was based on the assumption that the bottom of

the solid region melts so as to remain almost spherical.

The polar velocity component within the gap was ap-

proximated as being similar to a pressure-induced ¯ow

between parallel plates, and the coe�cients of the

parabolic velocity pro®le in the gap were obtained by

assuming that the solid and molten shell remain ®xed
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and ¯uid is injected into the gap to produce the gap ¯ow.

With all the above assumptions, the initial stage up to

about half the melting process was investigated. The

interface position and temperature pro®les for various

Stefan numbers were given at various stages of melting.

It was found that in the bulk melt region above the solid,

convective motions arising from the dropping of the

solid mass generally cannot be neglected. Bahrami and

Wang [5] also investigated the melting process in a

sphere. The velocity pro®le in the melt was obtained by

assuming that the ¯ow is similar to pressure-driven ¯ow

between parallel plates, and the heat transfer to the

melting front is di�usion-controlled. Upon decoupling

of the temperature ®eld from the velocity ®eld, an ap-

proximate closed-form solution of the melting process

was obtained and the relationship between the interface

properties and time was also given. Following along the

lines of [4,5], Roy and Sengupta [6] obtained an ana-

lytical solution for the melting rate on the lower surface

of the solid core. Later, Roy and Sengupta [7] studied

the e�ects of natural convection within the thin melting

layer in the bottom of the sphere and within the top part

of the sphere during the unconstrained melting process.

The two zones were analyzed separately but appropriate

coupling conditions were utilized at the ¯uid±solid in-

terface. They found that a signi®cant amount of melting

took place at the upper surface due to the signi®cance of

natural convection, whereas in previous research [4±6],

the e�ect of natural convection on the melting process

was neglected.

It is noteworthy to point out one more time that the

convection considered in the above-mentioned literature

is convection induced by the dropping of the solid core

due to its greater density in comparison to the liquid

phase. The only exception to this is the study of Roy and

Sengupta [7] where the extra e�ect of natural convection

was considered in the top ¯uid portion, and the heat

transfer mechanism in the bottom half was di�usion-

controlled. The ``pure'' buoyancy-driven convective ef-

fect ± i.e., natural convection induced by temperature

gradient in the melt ± has not been investigated for

spherical containers. Adetutu and Prasad [8] have re-

cently reported their study of the e�ects of natural

convection on the melting process inside a cylinder and

their work further stimulated our ongoing investigation

of transport phenomena in droplets and spherical con-

tainers, e.g., [9]. Given the status of the limited knowl-

edge of constrained phase change during which the

e�ects of buoyancy-driven convection can conveniently

be analyzed without the complication of the movement

of the solid portion, the present computational study

was undertaken. A single-domain enthalpy formulation

is utilized as opposed to earlier analyses which studied

each phase separately. In addition, focus is placed on

low-Prandtl number ¯uids, although the e�ects of the

Prandtl number variation is also elucidated. In order to

support the computational ®ndings presented here, a

qualitative study of the visualization of the constrained

melting problem at hand was also carried out.

2. Mathematical model

The physical model considered here is that of a

spherical container of radius R which holds a solid PCM

at temperature Ti, which could be a temperature lower

than the melting temperature (Tm), i.e., the phase change

material could be subcooled. For time t > 0, a constant

temperature (T0) greater than the melting temperature is

imposed on the surface of the sphere, i.e., T0 > Tm.

Nomenclature

cp speci®c heat at constant pressure, J/(kg K)

C porosity constant, kg/(m3 s)

Da Darcy number, de®ned as lk3=CR2�1ÿ k�2
g gravitational acceleration, m/s2

H sensible enthalpy, J/kg

DH latent heat, J/kg

k thermal conductivity, W/(m K)

L latent heat of fusion, J/kg

p pressure, Pa

Pr Prandtl number of the ¯uid, de®ned as m=a
r radial coordinate within the sphere, m

R radius of the sphere, m

Ra Rayleigh number, de®ned as

8gb�T0 ÿ Tm�R3=�ma�
Ste Stefan number, de®ned as cp�T0 ÿ Tm�=L
t time, s

T temperature, K

Ti initial temperature of the ¯uid, K

Tm melting temperature of the phase change

material, K

T0 temperature of the containerÕs surface, K

Vr radial component of the ¯uid velocity, m/s

Vh polar component of the ¯uid velocity, m/s

Greek symbols

a thermal di�usivity of the ¯uid, m2/s

b thermal expansion coe�cient, Kÿ1

h polar angle in the sphere

k liquid volume fraction

l ¯uid viscosity, kg/(m s)

m kinematic viscosity, m2/s

q density, kg/m3

Superscript

* dimensionless quantities

1606 J.M. Khodadadi, Y. Zhang / International Journal of Heat and Mass Transfer 44 (2001) 1605±1618



Melting will initiate at the surface and the solid±liquid

interface will move into the sphere. Emphasis is placed

on analysis of constrained melting which means that

both the solid and liquid phases have the same density.

As a result, the density variation inside the liquid phase

due to temperature gradients will promote buoyancy-

driven convection and the solid portion will not move

inside the liquid melt. The schematic diagram of the

physical model is shown in Fig. 1.

2.1. Governing equations

Because of the imposed surface temperature, heat

penetrates into the sphereÕs interior to melt the PCM,

and as the temperature of the melt rises, a density

change within the melt is expected, which then drives the

buoyancy-driven convection. In this study the following

assumptions are made:

1. Both the solid and the liquid phases are homo-

geneous and isotropic, and the melting process is ax-

isymmetric.

2. Both phases at the solid±liquid interface are in ther-

mal equilibrium (Tm).

3. Density change due to the phase change is neglected,

thus the solid portion of the material is held rigid.

The Boussinesq approximation is invoked, i.e., den-

sity change within the liquid phase which drives nat-

ural convection in the melt is only considered in the

body force terms.

Given these assumptions, the continuity, momentum

and energy equations in the spherical coordinates for the

phase change problem can be written in the form of

general governing equation

o�qn�
ot
� 1

r2 sinh
o
or
�qVrr2 sinhn�

� 1

r2 sinh
o
oh
�qVhr sinhn�

� 1

r2 sinh
o
or

Cnr2 sinh
on
or

� �
� 1

r2 sinh
o
oh

Cn sinh
on
oh

� �
� Sn: �1�

The individual equations can be summarized in terms of

n;Cn and Sn as shown in Table 1. The enthalpy formu-

lation which is used in this study belongs to the single-

region (or continuum) class of methods. The present

form of the source term for the thermal energy equation

in Table 1 can be derived by splitting the total enthalpy

of the material into the sensible enthalpy �H � cpT � and

the latent heat (DH) [10]. A Darcy's law-type of porous

medium treatment [10] is utilized to account for the ef-

fect of phase change on convection. In Table 1, the last

components of the source term in the momentum

equations are the Darcy damping terms which will

conveniently force the velocity to zero in the solid phase.

In the present study, since phase change of a pure ma-

terial is our main concern, the last two components of

the source term of the energy equation were neglected,

since DH is constant in the solid and liquid phases, thus

making the two terms negligible due to mass conserva-

tion. The details of the treatment of the source term of

the energy equation is given by Zhang [11].
Fig. 1. Schematic diagram of melting within a spherical con-

tainer.

Table 1

Governing transport equations

Equation n Cn Sn

Continuity 1 0 0

Polar direction

momentum

Vh l ÿ 1

r
op
oh
ÿ qgb�T ÿ Tm� sinhÿ q

VrVh

r
� l

2

r2

oVr

oh
ÿ l

r2 sin2h
Vh ÿ C�1ÿ k�2

k3
Vh

Radial direction

momentum

Vr l ÿ op
or
� qgb�T ÿ Tm�cosh� q

V 2
h

r
ÿ l

2

r2

oVh

oh
ÿ l

2coth
r2

Vh ÿ 2
l
r2

Vr ÿ C�1ÿ k�2
k3

Vr

Thermal energy H
l
Pr ÿ 1

cp

o�DH�
ot
ÿ 1

cp

1

r2

o
or
�r2VrDH� ÿ 1

cp

1

r sinh
o
oh
�VhDH sinh�
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2.2. Boundary and initial conditions

The boundary and initial conditions to be satis®ed

for the present model are:

(i) No slip boundary condition and uniform im-

posed constant temperature are assumed on the

surface of the sphere

Vr � Vh � 0; T � T0 at r � R for t > 0: �2�
(ii) The problem associated with the variables being

multi-valued at the center is removed by intro-

ducing a very small, but ®nite, interior surface.

The validity of this technique was discussed by de

Vahl Davis [12]. The axial symmetric boundary

condition is applied at the interior surface. On all

the boundaries of the computational domain, the

gradient boundary conditions were discretized by

using a three-point formula with second order of

accuracy. The axisymmetric boundary condition

along the h � 0 and p lines are also invoked, i.e.:

Vr � oVh

oh
� oT

oh
� 0 at h � 0; p: �3�

(iii) The initial condition is:

Vr � Vh � 0; T � Ti at t � 0: �4�

2.3. Dimensionless governing equations

Introducing the following dimensionless variables:

r� � r
R
; V � � R

a
V ; p� � R2

qa2
p; T � � T ÿ Ti

T0 ÿ Ti

t� � Ste
at
R2
; H � � �H ÿ Hi�

L
� Ste � Sb � T �;

�5�

where the Stefan (Ste) and Subcooling (Sb) numbers are

de®ned as

Ste � cp�T0 ÿ Tm�
L

; Sb � Ti ÿ T0

Tm ÿ T0

; �6�

the dimensionless governing equations are obtained.

These are:

Mass conservation:

r � ~U � � 0; �7�
Momentum equation:

Ste
o~U �

ot�
� ~U � � r�~U � � ÿr�p� � Prr�2~U �

� 1

8
Ra Pr SbT �~eg ÿ Pr

Da
~U �; �8�

where ~U�;~eg are the velocity vector and the unit vector

in the direction of the gravitational acceleration (Fig. 1),

respectively, and:

Da � lk3

CR2�1ÿ k�2 ; Pr � m
a
;

Ra � 8gb�T0 ÿ Tm�R3

ma
:

�9�

The thermal energy conservation is

Ste
oH �

ot�
� ~U � � r�H � � r�2

H � ÿ Ste
ok
ot�

: �10�

A linear relationship between the latent heat and tem-

perature is used, i.e., DH � kL [10], where L is the latent

heat of fusion and the liquid volume fraction (k) is given

by

k �
1; T � Tl ;
TÿTs

TlÿTs
; Ts � T � Tl ;

0; T � Ts

8><>: �11�

with Tl and Ts being the liquidus and solidus tempera-

tures of an alloy, respectively. Finally, it should be noted

that since H � � Ste Sb T �, Eq. (10) can also be expressed

in terms of T�.
The corresponding dimensionless boundary and ini-

tial conditions are:

Boundary conditions:

V �r � V �h � 0; T � � 1; at r� � 1 t� > 0;

oV �r
or�
� oV �h

or�
� oT �

or�
� 0 at r� � 0 t� > 0;

V �r �
oV �h
oh
� oT �

oh
� 0 at h � 0; p t� > 0:

�12�

Initial condition:

V �r � V �h � 0; T � � 0 at 0 < r� < 1 t� � 0: �13�
Obviously, the melting phenomenon at hand is shown to

be a function of dimensionless spatial location (r/R and

h), dimensionless time (t� � Steat=R2) and the dimen-

sionless parameters, which are the Prandtl, Rayleigh,

Stefan, Subcooling and Darcy numbers.

3. Computational details

The governing equations were solved using the semi-

implicit method for pressure-linked equations (SIM-

PLE) procedure of Patankar [13]. A 121r � 41H grid

system was found to be su�cient to resolve the details of

the ¯ow and temperature ®elds based on comparison of

the streamline contours and liquid±solid interface pos-

itions for various grid densities. Forty-one (41) uni-

formly placed grids were laid in the polar angle direction

extending from h � 0 to p and 121 uniform grids were

laid in the radial direction. Fine grid distribution in the

radial direction allowed the use of longer time steps and

less under-relaxation in the simulation process. The
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temporal derivatives were treated using an implicit for-

mulation which demands no stability requirement. De-

pending on the operating conditions, the time step used

in the computations was maintained ®xed between 1 and

6 s, corresponding to dimensionless time step (Dt�)�
10ÿ4. The relaxation factors were generally 0.1, 0.1, 0.1

and 0.1 for Vr, Vh, P and T, respectively, whereas a re-

laxation factor of 0.15 was applied to the latent heat

updating. At every time step, the iterations were termi-

nated when the sum of the normalized absolute residuals

for each variable was less than �1 � 10ÿ8, and the re-

lative change of all the variables at every grid point was

assured to be lower than �2 � 10ÿ5 upon convergence.

At each time step, the number of iterations needed to

achieve convergence varied between 100 and 5000. The

CPU time per iteration was about 1:5� 10ÿ1 s. The

computations were performed on the CRAY C-90 su-

percomputer of the Alabama Supercomputer Authority,

which is located in Huntsville, Alabama.

4. Results and discussion

4.1. Thermophysical properties and process parameters

In the present study, emphasis was placed on low-

Prandtl number ¯uids which is typical of most molten

liquid metals and alloys. In view of this, silicon was

chosen as a typical low-Prandtl number ¯uid and its

thermophysical properties were used [8] in the simula-

tion process. These are:

k � 50 W=�m K�; q � 2420 kg= m
3
;

cp � 960 J=�kg K�; L � 1:8� 106 J=kg;

Pr � 0:03; b � 1:384� 10ÿ4 Kÿ1:

�14�

For a given material (®xed Prandtl number), the Stefan

and Rayleigh numbers cannot be varied independently.

Therefore, a parametric study by which combinations of

the radius of the sphere (R) and the temperature di�er-

ential �DT � T0 ÿ Tm� were varied was undertaken in

order to assess the role of buoyancy-driven convection

during melting. Moderate Prandtl number (Pr � 1.0)

and high-Prandtl number (Pr � 50) ¯uids were also

considered. Table 2 gives the pertaining process

parameters for the computed cases. The subcooling ef-

fects were not included in the simulation process, i.e., the

initial temperature of the phase change material was

assumed to be at the melting temperature (Sb � 1). In

order to simulate the phase change process of the pure

materials, the mushy zone is made very small. For the

present study, �Tl ÿ Ts� was given the value of 0.5°C in

the production runs for the simulation material (Si)

which has a melting temperature of 1685 K. Meanwhile

the porosity constant C in the Darcy number is set to 109

kg/(m3 s), so that the momentum equations drive the

velocity to zero in the solid zone [8,10].

4.2. Di�usion-controlled melting

For benchmarking purposes, a set of simulations

considering only the di�usion-controlled melting was

undertaken. For these cases, a uniform radial grid

system (100±200 grid points) was utilized. In the ab-

sence of convection e�ects, di�usion-controlled melting

is independent of the angular position and the un-

melted portion remains a perfect sphere at all times

with the radial position of the liquid±solid interface

decreasing with time. Concentric temperature contours

are another feature of di�usion-controlled melting. The

time span needed to melt the material due to conduc-

tion mode of heat transfer only is summarized in col-

umn 5 of Table 2. It is noted that the dimensionless

total melting times �t�fm� are nearly constant at about

0.165. These time spans were used to get a conservative

estimate for the duration of the convection phase of the

computations.

4.3. Transient ¯uid ¯ow and temperature ®elds ± e�ect of

the Rayleigh number

In order to assess the role of the Rayleigh number on

the melting process, several cases were run as sum-

marized in Table 2. When the Rayleigh number is small

(Ra� 104), buoyancy-driven convection almost plays no

role in the melting process. The contours of the tem-

perature ®eld feature concentric ring-like patterns and

the interface at di�erent angular locations recess almost

at the same rate. This is also indicated by virtually no

di�erence in the total melting time between the

Table 2

Computational cases studied (Pr � 0.03)

DT [°C] R [m] Rayleigh

number

Stefan

number

Conduction-only melting

time [s/dimensionless]

Convection melting

time [s/dimensionless]

15 0.01 1.269 ´ 104 0.008 92/0.158 92/0.158

50 0.015 1.428 ´ 105 0.0267 65.5/0.167 60/0.153

50 0.03 1.143 ´ 106 0.0267 262/0.167 228/0.145

50 0.065 1.151 ´ 107 0.0267 1206/0.165 750/0.102

100 0.05 1.048 ´ 107 0.0533 370/0.170 210/0.098
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conduction-only case and the convection enhanced case

shown in the ®rst row of Table 2.

4.3.1. Flow structure for di�erent Rayleigh numbers

Case (a) (Ra � 1:428� 105): Instantaneous contours

of the streamline and temperature ®elds are given in

Fig. 2 for a DT � 50°C and R � 0.015 m case (Rayleigh

and Stefan numbers of 1:428� 105 and 0.0267, respec-

tively). Four instantaneous plots are provided at di-

mensionless times t� � 0:026; 0:077; 0:128 and 0.153. The

temperature contours are shown on the right half of

each circle whereas the streamlines are presented on the

left half with the h � 0 and p vertical line separating the

two ®elds. The shaded area indicates the unmelted solid

phase at a given instant. Early on during the melting

process, the temperature contours are nearly perfect

concentric rings indicating the dominance of the con-

duction mode of heat transfer (Fig. 2(a)). Due to the

small radius of the sphere, the Rayleigh number is

relatively low for this case and the established buoyancy-

driven convection is not strong in comparison to con-

duction. Note that around t� � 0:077, the temperature

contours begin to deviate from concentric ring patterns

and the solid unmelted zone is shaped as an oblate

spheroid (Fig. 2(b)), indicating that convection begins to

a�ect the melting process. When the melting process

reaches a point where the whole domain is nearly com-

pletely melted (t� � 0.153 for this case), the solid zone

is found at r/R � 0.2 below the center of the sphere

(Fig. 2(d)), suggesting that melting has been more in-

tense in the top portion of the sphere. Fig. 3 shows the

history of the maximum and minimum stream function

values in the melt. In the present study, the stream

function is set to be zero on the surface of the sphere.

The maximum stream function represents the strength

of the clockwise-rotating recirculating cell of Fig. 2,

while the minimum stream function represents the

strength of the weak counter-clockwise rotating recir-

culating cell which appears around t� � 0.065. In the

beginning, ¯uid ¯ow is weak with a single recirculating

¯uid cell spreading all over the thin spherical annulus.

As the melting process marches on, ¯uid ¯ow gets

stronger with the maximum stream function value rising

in time, and reaches approximately its extreme value

around t� � 0.05. At a certain time, t� � 0.065 for this

Fig. 2. Streamlines and temperature contours for DT � 50°C and R � 0.015 m (Ra � 1:428� 105, Ste � 0.0267 and Pr � 0.03) at

di�erent time instants.
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case, a second counter-clockwise-rotating recirculating

¯uid cell at the top portion (h � 45°) of the melt is in-

duced due to the skewed temperature ®eld.

Case (b) (Ra � 1:143� 106): Contours of the

streamline and temperature ®elds for a DT � 50°C and

R � 0.03 m case (Rayleigh and Stefan numbers of

1:143� 106 and 0.0267, respectively) are given in Fig. 4

for four dimensionless time instants (t� � 0.026, 0.077,

0.102 and 0.128). At the time instant t� � 0.026 in

Fig. 4(a), the temperature contours are still nearly con-

centric suggesting the dominance of the conduction

mode of heat transfer. As the melting process continues,

the ¯uid heated near the surface rises to the top re-

placing the colder ¯uid. The displaced colder ¯uid drops

in the same direction of gravity and enhances the al-

ready-existing conduction heat transfer. This will in turn

cause the top portion of the sphere (h� 0°) to melt faster

than the rest of the sphere. The cold ¯uid dropping

down along the solid±liquid interface ®nally arrives at

the bottom of the solid zone. In the bottom region

(h� 180°), the convective mode of transfer counteracts

conduction of heat from the surface toward the un-

melted region. As a result, the melting rate in the bottom

region should be slower than any other region within the

Fig. 4. Streamlines and temperature contours for DT � 50°C and R � 0.03 m (Ra � 1:143� 106, Ste � 0.0267 and Pr � 0.03) at

di�erent time instants.

Fig. 3. The time history of the minimum and maximum stream

function values (Case (a)).
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sphere. The consequence of these e�ects are clearly ob-

served in Fig. 4(b) (t� � 0.077). As the melting is con-

tinued and the convection e�ects are enhanced,

temperature contours start to deviate markedly from

concentric-ring-like patterns. The skewed temperature

contours in the top zones (h� 45°) of the sphere give rise

to a new recirculating structure at a much earlier time

(t� � 0.03). The presence of a similar phenomenon has

been reported by Adetutu and Prasad [8] for melting

within a horizontal cylinder. For this case, near the

completion of the melting period (t� � 0.145), the solid

zone is found at r/R� 0.3 below the center of the sphere

(not shown in Fig. 4), indicating more intense melting in

the top portion of the sphere than in Case (a). Fig. 5

shows the maximum and minimum stream function

values in the melt. It is noted that the second, counter-

clockwise-rotating recirculating cell is relatively stronger

(only about one order of magnitude di�erence in the

value of stream functions between the two cells) and

appears much earlier (t� � 0.03) when compared to Case

(a). The time-dependent positions of the eyes of the two

recirculating cells for this case and others are not given

here but have been discussed by Zhang [11].

Case (c) (Ra � 1:151� 107): Contours of the instan-

taneous streamline and temperature ®elds are given in

Fig. 6 for a DT � 50°C and R � 0.065 m case (Rayleigh

and Stefan numbers of 1:151� 107 and 0.0267, respec-

tively) at dimensionless times t� � 0.0245, 0.0367,

0.0611, 0.0734, 0.0978 and 0.1028. This case represents a

relatively high Rayleigh number, so the e�ects of

buoyancy-driven convection are more pronounced

compared to previous cases discussed above. With the

temperature contours getting skewed at an earlier time,

the new recirculating vortices are seen earlier in the top

and bottom regions in Figs. 6(d) and (e). These vortices

maintain their location and strength for some time. As

the unmelted portion gets smaller, the temperature

skewedness in the bottom region is relaxed and the

bottom vortex is consumed into the long-lived original

vortex (Fig. 6(f)). Near the completion of the melting

period (t� � 0.1028), the solid zone is found to drop

down further to r/R� 0.35 below the center of the

sphere, indicating an even stronger convective role in the

melting process than that in Cases (a) and (b). Fig. 7

shows the time history of the maximum and minimum

stream function values for three recirculating cells in the

melt. Since the Rayleigh number is high, ¯uid motion is

stronger, which can be seen from the absolute values of

the maximum stream functions in the above-mentioned

three cases. The second cell appears at t� � 0.01, whereas

the third cell appears at t� � 0.065.

4.3.2. Position of the liquid±solid interface

The e�ects of buoyancy-driven convection on pref-

erential melting of the sphere at di�erent points are more

clearly elucidated by presenting the instantaneous loca-

tion of the melt front. This information is given in

Fig. 8(a) for Case (b), where the dimensionless radial

location of the melt interface (r� � r/R) at three angular

positions (h � 0°, 90° and 180°) are given as functions of

the dimensionless time, t�. The angle-independent radial

position of the melt for the case of di�usion-controlled

melting is also shown for comparison purposes. As

outlined above, the top region of the sphere (h � 0°
melts faster than the rest of the sphere. For this speci®c

case, the bottom region (h � 180°) melts slowest even

when compared to the case of pure conduction, whereas

melting along the horizontal plane going through the

center (h � 90°) is faster than the case of di�usion-

controlled melting. The dimensionless radial locations of

the melt interface at the same three angular positions are

given as functions of the dimensionless time in Fig. 8(b)

for Case (c). For this case, the e�ect of buoyancy-driven

convection is the most marked and melting times in

terms of the dimensionless variable t� are small. It is

observed that the melt fronts at the angular positions of

h � 0 and 90° disappear about 35% faster when com-

pared to their counterparts in Fig. 8(a). The evolution of

the melting process near the bottom (h � 180°) is

somehow di�erent when compared to that of Fig. 8(a).

Early on during the process, the melting is slow com-

pared to the di�usion-controlled case, due to the coun-

teraction of convection and conduction in that region.

Around t� � 0.06, with the emergence of the two new

vortex structures the melting is intensi®ed to a rate faster

than that in the case of di�usion-controlled melting. For

comparison, the dimensionless radial locations of the

melt interface at the same three angular positions are

also given as functions of the dimensionless time in

Fig. 8(c) for Case (a). The Rayleigh number for this case

being the smallest among the three cases studied, the

melting pattern deviates very little in comparison to

di�usion-controlled melting.
Fig. 5. The time history of the minimum and maximum stream

function values (Case (b)).
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4.4. Total melting time ± comparison to di�usion-con-

trolled melting

In order to assess the overall role of convection on

the melting process, the instantaneous total liquid vol-

ume fractions for the three Cases (a)±(c) are plotted in

Fig. 9. The liquid volume fraction (LVF), which is the

ratio of the melt volume to the total volume of the

sphere, was determined from a numerical integration of

the local volume fraction, k, i.e.,

LVF�t� � 1

�4=3�pR3

Z p

0

Z R

0

k�r; h; t�r2 sinhdr dh: �15�

Fig. 6. Streamlines and temperature contours for DT � 50°C and R � 0.065 m (Ra � 1:151� 107, Ste � 0.0267 and Pr � 0.03) at

di�erent time instants.
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The total melting time was 8% shorter for Case (a), 15%

shorter for Case (b), and 40% shorter for Case (c) when

compared to the corresponding di�usion-controlled

melting processes. The higher the Rayleigh number, the

bigger the deviation from the di�usion-controlled melt-

ing. The total melting times are also summarized in

column 6 of Table 2.

4.5. E�ect of the Stefan number

In order to get an understanding of the role of the

Stefan number during the melting process, another case

comparable to Case (c) was run, and the process

parameters for this case are listed in the last row of

Table 2. In order to isolate the e�ect of the Stefan

Fig. 8. The time history of the radial position of the melt interface for: (a) Case (b); (b) Case (c); (c) Case (a).

Fig. 7. The time history of the minimum and maximum stream

function values (Case (c)).

Fig. 9. Transient evolution of total liquid volume fraction for

Cases (a), (b) and (c).
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number, the Prandtl number was kept constant. The

Rayleigh number was approximately kept unchanged by

manipulating the DT and R combination, and the Stefan

number was changed from 0.0267 to 0.0533. Upon

comparison of the results for this case to those of Case

(c), it was concluded that the ¯ow and thermal ®elds are

very similar for both cases [11]. The radial position of

the interface for the two cases showed virtually no dif-

ference. Although, it is premature to conclude that the

Stefan number plays no role in the melting process due

to the insu�cient data, it is safe to say that the Rayleigh

number has a greater impact on ¯uid ¯ow than the

Stefan number, at least in this range of Stefan numbers

studied. This ®nding is in concert with the study of

Adetutu and Prasad [8].

4.6. E�ect of the Prandtl number

The Prandtl number is a measure of the relative sig-

ni®cance of the momentum and thermal di�usivities. It

is not possible to perform a parametric study of the ef-

fect of the Prandtl number, since the Rayleigh number

changes simultaneously with any change in material

properties, even if all the other process parameters are

kept constant. Therefore, two hypothetical cases where

the Prandtl numbers were arbitrarily set to 1.0 and 50

were simulated. This was done with the other process

parameters changed so as to keep the Rayleigh and

Stefan number similar to the Case (b). Fig. 10 shows the

isotherms and streamlines as well as the solid±liquid

interface for the case of Pr � 1.0. Comparison of the

two cases (Pr � 0.03, Fig. 4 and Pr � 1.0, Fig. 10) in-

dicates signi®cant variations in the ¯ow pattern and the

shape of melt front. The solid core for the Pr � 1.0 case

retains its spherical shape throughout the melting pro-

cess, and the ¯ow pattern consists of a single recircu-

lating cell. The total melting time is t� � 0.112 for this

case, which in comparison to the conduction-only

melting, is 32% faster, suggesting an even stronger

overall convective e�ect on the melting process when

compared to Case (b) (15%). Near the completion of the

melting period, the solid core is found at r/R � 0.486

Fig. 10. Streamlines and temperature contours for DT � 50°C and R � 0.0925 m (Ra � 1:072� 106, Ste � 0.0267 and Pr � 1.0) at

di�erent time instants.
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below the center of the sphere, indicating the greatest

e�ect of natural convection among the cases discussed to

this point.

The streamlines and temperature contours for the

hypothetical case of Pr � 50 are given in Fig. 11. In

general, the ¯ow patterns are similar to the Pr � 1.0

case with the intense e�ect of natural convection causing

preferred melting in the top portion, even though the

spherical shape of the solid is maintained. Moreover, in

comparison to the Pr � 1.0 case, the overall melting rate

has been enhanced.

4.7. Visualization of the melting pattern

In order to support the validity of the computational

®ndings presented above, a set of melting experiments

were conducted. An aquarium was ®lled with water and

it served as the hot ¯uid bath within which the spherical

container holding the PCM was placed. The water

heater was a Cole-Parmer PolyStat Model 1253-00 cir-

culator (maximum power output of 1050 W), providing

an even temperature distribution within water. Spherical

light bulbs (GE Silvanus) with wall thickness of 0.65 mm

and outside diameters of 51.5, 78.1, 94.0 and 123 mm

were employed. The neck of each bulb was carefully cut

o� and the incandescent element and bulb threads were

removed. Hollow cylindrical extensions were attached to

the open neck of the bulbs in order to accommodate the

expansion of the ¯uid upon melting and also provide a

holding surface. A vertically-positioned long piece of

jute packing twine was glued to the inside center bottom

of every bulb which served as the PCM constraining

agent. Each bulb was ®lled with a commercially avail-

able re®ned beeswax which served as the PCM. The

Prandtl number of the PCM is estimated to be around

57 which is common for family of waxes. This PCM has

a melting point range of 62±64°C and transforms from

an opaque white±yellow color to a yellow-tinged trans-

parent liquid upon melting. In order to avoid the

problem of inhomogenity due to the entrapment of

dissolved air in the wax, each bulb was ®lled with molten

Fig. 11. Streamlines and temperature contours for DT � 50°C and R � 0.075 m (Ra � 1:072� 106, Ste � 0.0267 and Pr � 50) at

di�erent time instants.
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wax and then allowed to solidify in a low-pressure (25

mm Hg vacuum) chamber over a period of 6±7 h.

During each experiment, the bulb was placed in the

aquarium and the water was slowly heated to 60°C.

Once the PCM was isothermal at 60°C, temperature of

the bath was ramped to 73°C (10°C above the melting

point of the PCM). This scheme was preferred to the

earlier attempts in which the colder bulb was suddenly

introduced into the hot water and many bulbs cracked

because of the thermal shock. Setting of the stop watch

began when it was apparent that melting had started.

This usually took place at the water temperature roughly

equal to 70°C, but no gross melting occurred until the

temperature of the bath had been maintained at 73°C

for about 4±5 min. The photographs showing the images

of a bulb at di�erent time instants are given in Fig. 12. In

Fig. 12. Instantaneous photographs of the melting of wax inside a spherical bulb.
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this ®gure, the inside bulb diameter was 92.7 mm and

the Rayleigh and Stefan numbers were estimated to be

1:98� 107 and 0.089, respectively. The estimated di-

mensionless time instants (t� � Ste at/R2) for each im-

age are also identi®ed. For conversion purposes, note

that the actual time needed to melt the PCM to the

pattern shown at time t� � 0.0293 was t � 134 min

after setting of the stop watch. Visual inspection of the

images suggests that the general features of the melting

phenomena uncovered by the mathematical model are

physically present in the experiments. Early on, the

melting is con®ned to a very thin layer next to the wall

and the molten wax rises to the top and starts ®lling the

cylindrical extension. Starting around t� � 0.0164, the

preferential melting on the top portion of the sphere

due to buoyancy-driven convection is clearly estab-

lished.

5. Conclusions

Based on the ®ndings of the present computational

study of the combined conduction and buoyancy-driven

melting within a sphere, the following conclusions are

drawn:

1. Early during the melting process, the conduction

mode of heat transfer is dominant, giving rise to con-

centric temperature contours.

2. As the buoyancy-driven convection is strengthened

due to the growth of the melt zone, it is observed that

melting in the top region of the sphere is much faster

than in the bottom region of the sphere. This is ex-

plained in terms of enhancement or impedance of

the conduction mode of heat transfer at the respective

locations.

3. When buoyancy e�ects are very marked, as many as

three time-varying recirculating vortices are observed

due to the skewedness of the temperature ®elds.

4. The strength of natural convection in the melting

process is more clearly indicated by the Rayleigh

number than the Stefan number, as the ¯ow pattern

and overall convective e�ects change markedly with

the Rayleigh number.

5. The Prandtl number plays an important role in the

melting process. With the Rayleigh number ®xed,

changing the Prandtl number from 0.03 to 1.0

and 50 bring about totally di�erent ¯ow and melting

patterns.

6. The computational ®ndings that the preferential

melting on the top portion of the sphere is due to

buoyancy-driven convection is clearly established

through an experimental visualization of the melting

of a commercial grade wax inside spherical bulbs.
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